- Title
- Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans
- Creator
- Callister, Robert J.; Pierce, P. A.; McDonagh, J. C.; Stuart, D. G.
- Relation
- Journal of Morphology Vol. 264, no. 1, p. 62-74
- Publisher
- John Wiley & Sons
- Resource Type
- journal article
- Date
- 2005
- Description
- A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (447%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each fiber type, with the distribution of slow-tonic fibers paralleling that of the SO fibers. In the five test muscles, fiber cross-sectional area was usually ranked Fg > FOG > SO, and slow-twitch always > slow-tonic. In terms of weighted cross-sectional area, which provides a coarse-grain measure of each fiber type's potential contribution to whole muscle force, all five muscles exhibited a higher Fg and lower SO contribution to cross-sectional area than suggested by their corresponding fiber-type prevalence. This was also the case for the slow-twitch vs. slow-tonic fibers. We conclude that slow-tonic fibers are widespread in turtle muscle. The weighted cross-sectional area evidence suggested, however, that their contribution to force generation is minor except in highly oxidative muscles, with a special functional role, like TeC4. There is discussion of: 1) the relationship between the present results and previous work on homologous neck and hindlimb muscles in other nonmammalian species, and 2) the potential motoneuronal innervation of slow-tonic fibers in turtle hindlimb muscles. (c) 2005 Wiley-Liss, Inc.
- Subject
- motoneuron; segmental motor control; spinal cord; lizard dipsosaurus-dorsalis; motor pool organization; cervical; musculature; skeletal-muscle; spinal-cord; contractile properties; hindlimb muscles; adult turtle; axial muscle; quantitative-analysis
- Identifier
- http://hdl.handle.net/1959.13/25210
- Identifier
- uon:181
- Identifier
- ISSN:1097-4687
- Rights
- *
- Language
- eng
- Reviewed
- Hits: 6156
- Visitors: 6038
- Downloads: 0